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Elongated-body theory, used by Lighthill & Blake (1990) to investigate fish 
locomotion by undulatory movements of median fins, and to demonstrate 
momentum enhancement in the case when motile fins are attached to a rigid fish 
body of far greater depth, approximates local fluid motions by solutions of the two- 
dimensional Laplace equation. Here, a better local approximation (equation (2) 
below) to  the three-dimensional Laplace equation for fluid motions of undulatory type 
is used to investigate the possibility of short-wavelength limitations on momentum 
enhancement. I n  an extreme case (fish bodies of very small width and very large 
depth) when on elongated-body theory the momentum enhancement factor J9 is 
predicted to  become very large, short-wavelength considerations are shown to place 
a specific upper limit on J9 (see figure 2). In more general cases, this upper limit should 
perhaps be regarded as coexisting with other upper limits associated with either non- 
zero width or finite depth of fish body. 

Short-wavelength limitations on momentum enhancement are of some biological 
interest as implying the existence not only of advantages (including a reduction in 
body drag) but also of some competing disadvantages (limitations in propulsive 
force) arising from progressive reductions in the wavelength of fin undulations. 

1. Introduction 
For the biological background to this analysis, see Lighthill & Blake (1990, 

hereafter referred to as Part 1). The present paper pursues a suggestion in $ 5  of Part 
1 about the possibility of estimating to what extent reductions in the wavelength h 
of undulatory motions of median fins attached to a rigid fish body may limit 
momentum enhancement. 

Quite simply, this suggestion is that local enhancement of momentum, calculated 
in Part 1 for potential flows satisfying the two-dimensional Laplace equation 

(in accordance with the principles of elongated-body theory), should be recalculated 
for solutions of the modified equation 

a2$/ax2+a2q5/ay2 -k2$ = 0 (where k = 2n/h) (2) 

which follows from the three-dimensional Laplace equation for a potential q5 varying 
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sinusoidallyt in the z-direction with wavelength A. Some reduction in the calculated 
momentum can be expected because the fundamental solution of ( 2 )  is exponentially 
attenuated with distance r like exp ( -  kr ) .  

The present paper confirms such expectations through a calculation of the 
momentum enhancement factor p along these lines in a simple limiting case. This is 
the case when, whereas thefin depth 

l - s = b  (3) 

k-l = h / 2 ~ ,  (4) 

may have an arbitrary magnitude in comparison with 

nevertheless, the overall depth of fish, 21, is large compared with k-l .  Our analysis 
takes the fish body width small (as in $ 4  of Part 1) but is equally applicable to 
balistiform and to gymnotiform locomotion. 

The result (see $ 2 )  of this fairly simple calculation for 21k large is shown in figure 
2 ,  where we see also that when a t  the same time kb is relatively small the momentum 
enhancement factor is closely approximated as 

p = 1.53 (kb)-i .  ( 5 )  

Such results can be viewed as indicating yet one more restriction on that broad 
tendency for p to increase without limit as s/Z+ 1 which is illustrated for small fish 
body width in Part 1, figure 6 (and for gymnotiform locomotion in Part 3 (Lighthill 
1990), figure 4) ; here the limit s/Z -+ 1 is the same as the limit b/Z + 0. Admittedly the 
assumption of either a non-zero axis ratio t / s  (width to depth) for the fish body cross- 
section or a non-zero value of b / l  was found in Parts 3 and 1 to restrict p to finite 
values, shown to be around 3 for typical fish geometries ; against this background, we 
have to ask whether the exponential attenuation of a fundamental solution of 
equation ( 2 )  may act so as to restrict the momentum enhancement factor /3 to upper 
limits still lower than the geometry of the fish cross-section would itself impose. 

Equation ( 5 )  gives us a positive answer to this question unless the product kb is less 
than or equal to about a. Specifically, for thin fish bodies, the momentum generated 
by given movements of a median fin may be limited in value either by the finite depth 
of the fish body or (in cases of very large fish body depth) by the exponential 
attenuation, like exp ( - kr ) ,  of the influence of the fin’s movements. When kb is less 
than or equal to about a the former limitation predominates, but for larger values of 
kb the exponential attenuation may more stringently limit p, to an upper bound given 
a t  most by equation ( 5 ) ;  an equation of which this interpretation is more fully 
explained in $ 2 .  

From the biological point of view, the above conclusion raises certain rather 
interesting questions, related to the distinction between two main types - undulatory 
and oscillatory - of balistiform locomotion found (see Part 1, $ 2 )  in nature. The 
coexistence of two types of balistiform locomotion might be reckoned to  imply 
competing benefits ; yet elongated-body theory (Part 1) suggests that both share to 
a comparable extent the advantage of enhanced thrust that  comes from momentum 
enhancement, while only the undulating type enjoys the benefit of reduction in body 
drag which results from the virtual elimination of lateral oscillations in sideslip and 

t Admittedly, any periodic variation of q5 in the z-direction is unlikely to be very closely 
sinusoidal ; nevertheless, its leading Fourier component (which by definition is sinusoidal) can be 
expected to make the main contribution to the momentum in those ‘configurations (a) and ( c ) ’  that 
are defined in figure 4 of Part 1. 
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yaw. Now we see that any evolutionary trends towards undulatory motion at 
relatively shorter wavelength, such as may have tended to win this drag-reduction 
benefit, will have carried with them a partly countervailing disadvantage : a gradual 
reduction of thrust enhancement. This must have acted, as suggested in Part 1, $5, 
to limit the advantage of further reduction of wavelength beyond a certain point. 

2. Recalculation of momentum enhancement in the limiting case 2Zk large 
The case where the wavelength A of fin undulation is very short compared with 2n 

times the overall depth 22 of the fish cross-section may be treated as the limiting case 

21k+ co. (6) 

Figure 1 shows the geometry of the fluiddynamic problem which needs to be solved 
in this limiting case: effectively, each fin (that is, each of the two in the case of 
balistiform locomotion, or the single median fin in the case of gymnotiform 
locomotion) moves as if attached to a thin rigid fish body of unlimited depth. The 
resulting fluid momentum M per unit length of fish must be calculated in order to 
determine the momentum enhancement factor 

/I = M/M,.  (7) 

Here, the denominator M ,  represents the momentum 

M,  = &wb3 (8) 

associated in elongated-body theory (see equation ( 3 2 )  of Part 1)  with the same 
motion of the fin in question ‘on its own ’ in unbounded fluid. 

If in the problem of figure 1 the velocity potential q5 satisfied the two-dimensional 
Laplace equation (l) ,  then the associated momentum M would be infinite (and indeed 
figure 6 of Part 1 shows how /I-+ co as s / l +  1 ; that is, as b / l - + O ) .  However, the use 
of the modified equation ( 2 )  for $ produces an exponential attenuation in the effect 
of the fin motions with distance from the fin, and this limits the momentum to a finite 
value. 

We calculate M by the same method that was used in equations (4) to (10) of 

(9) 
Part 1. Once again, we write 

a function which, in the problem of figure 1, takes the form 

(~q5 laY)y -o  = f(4 ; 

f(x) = w ( b - 2 )  (0 < x < b ) ,  0 (X > b ) ,  (10) 

The required momentum M per unit length can be 

M = p  $dx f 
as in Part 1, equation (6), with the integral taken 
infinite plate in the positive (anticlockwise) sense. 

Again as before, we define as the solution 
condition (9) with f(x) = 1 ; thus, 

(aq5l/aY)y-o = 1. 

expressed in the same form 

(11) 

around the surface of the semi- 

of (2) satisfying the boundary 

(12) 

Here, we note that the famous diffraction study by Sommerfeld (1895) solved an 
analogous problem for the wave equation (that is, for ( 2 )  with +k2 replacing -k2) 
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f 
Fin Rigid body - w l  x = o  x = b  

FIGURE 1 .  The fluiddynamical problem in the limiting case 2Zk + m. 

in terms of error functions of imaginary argument. A similar study in 53 below 
derives $, in terms of the error function of real argument, 

erf (2) = 2 d  1 exp ( -  e) dc. 

I n  addition, the value of $, on the plate is derived in a particularly simple form as 

$1 = T k-l erf [ (kx);], 

with the T sign standing for - on the upper surface and + on the lower surface of 
the plate. 

As in equation (8) of Part 1 we can use the property (12) of $, to rewrite the 
momentum (11) as 

r 

and then use Green’s theorem to re-express i t  as 

Note that Green’s theorem continues to  give this result although both $ and 4, 
satisfy (2) rather than (1) ; thus, the difference between the integral (15) and (16) can 
be written as p times the integral over the entire fluid region of 

Finally, substituting from (9) and (14) in the integral (16) for the momentum, where 
the change in x is negative on the upper and positive on the lower surface, we obtain 

M = 2pk-* J:j(x) erf [(kxp] dx. 

It is now straightforward to calculate M for the particular form off(z) shown in (10) 
as 

M = pok-3{(k2b2-kb+$)erf [(kb);] + ( i k b - f ) ( k b ) i e r f ’ [ ( k b ) i ] }  (19) 

in terms of the error function (13) and its first derivative. Equations (7), (8) and (19) 
allow us to plot the momentum enhancement factor as a function of kb in figure 2, 
whose general significance has already been discussed. 

The limiting behaviours of /? as kb + 0 and as kb + co deserve detailed explanation. 
Since f(z) = 0 for z > b,  equation (18) can be well approximated for small kb if we 
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FIGURE 2. The momentum enhancement factor B plotted as a function of kb in the 
limiting case 21k --f CO. 

replace erf z in the definition (13) by its form 2 ~ - i  2 for small 2. Then (18), with f ( x )  
as in (lo), becomes 

M = 4p(~k)-iG, (20) 

with G = lo* xy(x) dx 

= &bi, 
and this gives 

/? = (128/15d) (kb)-a = 1.53(kb)-i. 

An independent way of arriving at this result (20) for the momentum is to note 
that for kb small the motion in the vicinity of the fin itself will closely satisfy the two- 
dimensional Laplace equation (1).  Accordingly, a simple conformal mapping can be 
used to determine the form of that motion and to show that its far-field representation 
is as 

(24) 

(in polar coordinates with 2 = r cos 8, y = r sin 8). This far-field representation - 
which, in the language of matched asymptotic expansions, is the outer limit of an 
inner solution - must be matched to an outer solution of (2) which has the property 
(24) in the inner limit as kr+O. This solution is 

4 - - 2n-I Gr-i cos +3 

4 = -22x-1Ge-krr-l cos $9 (25) 

as will be evident to anyone who remembers that the modified Bessel function of the 
second kind takes for order $ the value 

K;(z) = e-z(7~/22)+ 

K+( kr )  cos $3. 
and that (2) is satisfied by 
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Finally, the integral (11) for the momentum M is calculated from the expression (25) 
for 4 as 

M = 4pn-l G e-kxx-%dx = 4pG(nk)-$. (28) 1: 
This alternative way of deriving (20) has the merit of relating it directly to the 
tendency of a typical solution (25) to (2) to fall off exponentially like exp( - k r )  as r 
increases. 

In the other limit as kb becomes large the error function in (20) tends rapidly to 
1 ,  and its derivative to zero, so that 

M pWb2k-' -pwbk-' i- . . . . (29) 

p - 8 ~ - ' ( k b ) - ~  = 2.55 (kb)-l (30) 

The leading term in (29) gives the result 

displayed in figure 2. Such a result in the limit of extremely short wavelength can be 
interpreted in terms of that 'effective penetration depth ' of k-l on both sides of the 
plate which characterizes solutions of (2) such as 

e-ku for y > 0, or e+kY for y < 0. (31) 

2pk-' dx (32) 

This gives an effective added mass 

for each element dx of fin subject to the motion (10); and, after integration, this 
makes the momentum 

2pk-1 1: ~ ( b  - X) dx = pwb2k-] (33) 

as in the leading term of (29). 
On the other hand, figure 2 shows that p is not so closely represented by its leading 

term for large kb as is the case for small kb. This situation is associated with the 
negative second term in (29), which evidently reflects the fact that  momentum in the 
positive y-direction above and below the fin in figure 2 is accompanied by momentum 
in the negative y-direction in an area of order k2 (as kb- t  00) just to the left of the 
fin tip. 

This section's use of (2) to calculate p in a particular limiting case has valuably 
emphasized important restrictions on the accuracy of calculations based on the two- 
dimensional Laplace equation (l) ,  as in elongated-body theory. Needless to say, 
however, these latter calculations remain significant for many purposes of 
comparisons between properties of different cross-sectional geometries. 

3. Derivation of the solution 

bear in mind the close analogy to Sommerfeld's diffraction problem, where 
I n  order to find the solution q51 of (2) subject to the boundary condition (12), we 

(i) the geometry is the same; 
(ii) the partial differential equation is the same with the sign of k2 changed; 
(iii) the boundary condition for the scattered wave is the same. 
The original treatment by Sommerfeld (1895) was simplified greatly by Lamb 

(1906) and a little more in Lamb (1932, article 308); and Lamb's method is here 
adapted to the present problem. 
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Bearing in mind the interest in solut>ions which are expected (especially for kx large 
and positive) to resemble (31), we consider alternative solutions of (2) in the forms 

$ = eiky$+ and $ = e-ky$-. (34) 

a2$+laX2+a2$,/ay2f2~a$,/ay - = 0, (35) 

Then the equations satisfied by $+ and $- are 

where either the upper or the lower choice of sign is to be made throughout. 
We now define parabolic coordinates by the equations 

ii~ = 6’ - q2, ky = 2&/ ; (36) 

r,~+0 for c > O  and q + O  for E < 0  (37) 

with q > 0 in the fluid and with the limits 

Corresponding to the upper and lower surfaces of the plate. I n  terms of f [  and 7 the 
equations (35) become 

a2$*aE2 + a2$+/alr12 M 7 l  a$,/aE+ Ea$,lw = 0; (38) 

which (as Lamb’s treatment of the analogous problem suggests) have solutions 

$k =f*(E+r,J)+g,(E-r) 
provided the functions f +  - (5) and g* (5) satisfy 

(39) 

f’;  (5)  f 24.K (5)  = 0, s; (5)  T 25g;s’, (5)  = 0. (40) 
Only the solutions f+ and g- of these equations show an acceptable avoidance of 

exponential growth as 151 + co. We take 

involving solutions f+ and g- of (4) such that f+ vanishes exponentially as C+ + co 
(and remains finite as [+-co) while g- vanishes exponentially as [+-co (and 
remains finite as 5- + co). Since (36) for ( and r , ~  imply that 

( c + q ) 2  = k(r+y),  ( E - T ) ~  = k(r-y) with r2  = x2+y2 (42) 

the corresponding solutions (34) for $ vanish exponentially both for large positive y 
(like e-’“ and e-kY respectively) and for large negative y (like e+ky and eckr 
respectively) ; as might be expected in terms of ideas of exponential attenuation 
proceeding either with distance r from the origin or with distance IyI from the plate. 

The boundary conditions satisfied on q = 0 (where y = 0) by these two solutions 
are 

(43) [a (e+k”$+)/aYl,=, = A [ k ~ ~ m e X p ( - 6 ) d 5 - ~ k E - 1 e Y P ( - 5 P ) ]  

[a(e-kY$-)layl,,, = B [ - k l m e x p  (-c) dc-ikg-lexp ( -t2) ] and 

respectively ; so that, if A = B, then the difference 

(44) 

= e+kY$+ - e-ku$- (45) 

has 

2 

J -m 

FLM 213 
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which is independent of 6 .  Thus the choice 

A = B = k-1n-f 

makes satisfy the correct boundary condition (12). 
We deduce from (31): (45) and (47) that 

(47) 

where g+y and 6-7 satisfy (42). In terms of the error function (13), we can write 

$1 = gk-1 ekY [ 1 - erf (6  + y)] - ik-l e-ky [1 +erf(t-y)l. 

$ 1 = --jp erf (6): 

(49) 

(50) 

which agrees with the result in (14), on which $2 is based, since f ;  is the positive or 
negative square root of kx on the upper or lower edge of the plate respectively. 

It is a matter for satisfaction that this elegant error-function solution has made 
possible the modelling of balistiform and gymnotiform locomotion in yet another 
relevant limiting case. 

In  particular, the value of on y = 0 (where y = 0) can be written 
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